W A R M - U P

KAHOOT REVIEW-IDENTIFYING FUNCTIONS

14

$$y = 2x - 4$$

Quadratic

What type of graph is this?

$$y = 3x^{(2)} + 2$$

▲ Quadratic

Exponential

What type of graph is this?

Exponential Growth

Linear

Exponential Decay

Quadratic

What type of graph is this?

What kind of Graph is this?

Quadratic

Exponential Decay

Exponential Growth

$$y = x^2 - 4x + 2$$

▲ Linear

Exponential

Quadratic

What type of graph is this?

16

$$2x - 4y = 8$$

▲ Exponential

Quadratic

Linear

What type of Graph is this?

KAHOOT REVIEW-PARENT FUNCTIONS AND TRANSFORMATIONS

WARM-UP

5 / 1 4 / 2 0 2 1

How does the graph of f(x) = x - 4 differ from that of g(x) = x

- ▲ Translated 4 units left
- Translated 4 units right

- Translated 4 units down
- Translated 4 units up

How does the graph of $f(x) = x^2$ differ from that of $g(x) = (x - 3)^2 + 2$?

▲ Shifted 3 units left and 2 up

Shifted 2 units left and 3 up

Shifted 2 units right and 3 down

 \square Shifted 3 units right and 2 up

▲ Moved one unit down

Reflected across the x-axis

Moved one unit left

■ Reflected across the y-axis

How does the graph of f(x) = x differ from y = 5x?

▲ It is stretched vertically

It is compressed vertically

♦ Shifted 4 units left and stretched vertically

Shifted 4 units right and compressed vertically

▲ Shifted 4 units right and stretched vertically

■ Shifted 4 units left and compressed vertically

What does the graph of f(x) = 2 look like?

▲ Horizontal line @ x = 2

♦ Vertical line @ x = 2

Horizontal line @ y = 2

■ Vertical line @ y = 2

How does the graph of $f(x) = x^2$ differ from the graph of $g(x) = (-x)^2$?

▲ Reflected across the x-axis

Reflected across the y-axis

Translated down I unit

■ Translated up 1 unit