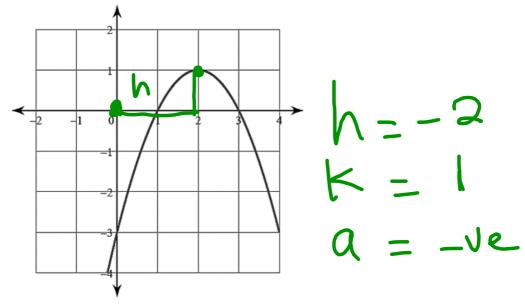
Warm-Up (EOC Type) 3/29/2021

1.



Write the equation of this graph in

a. Vertex form :
$$y = a(x-h) + k$$

a. Vertex form:
$$y = a(x-h)^2 + k$$

b. Standard Form: $y = ax^2 + bx + c$

|a) | Vertex Form

$$y = -(x-2)^2 + 1$$

b) Convert from Vertex

to Standard form.

 $y = -(x-2)(x-2) + 1$
 $x = -(x-2)(x-2) + 1$

2. Name the form and characteristics you see just from looking at the equation:

a.
$$y = (x - 5)(x + 2)$$

b. $y = x^2 + 5x(-10)$

factored form

Standard form

 $y = (x - 5)(x + 2)$

Standard form

 $y = (x - 5)(x + 2)$
 $y = x^2 + 5x(-10)$

Standard form

 $y = (x - 5)(x + 2)$
 $y = (x - 5)(x + 2)$
 $y = (x - 5)(x + 2)$
 $y = (x - 5)(x + 2)$

Standard form

 $y = (x - 5)(x + 2)$
 $y = (x$

c.
$$y = -(x + 4)^2 + 6$$

Vertex Form
Vertex = (h.k.)
 $V = (-4.6)$

d.
$$y = x^2 - 7$$

Standard fum
 $y - intercept: (0, -7)$
Vertex form
 $y = x^2 - 7$
 $y = x^2 - 7$
 $y = x^2 - 7$
 $y = x^2 - 7$
Vertex form
 $y = x^2 - 7$
 $y = x^2 - 7$

3. Find the vertex by completing the square:

a.
$$y = x^2 + 4x + 5$$

b.
$$y = \frac{2x^2 + 8x - 12}{3}$$

$$y = (x^2 + 4x) - 6$$

$$y = (x^2 + 4x) - 6 - 4$$

$$y = (x^2 + 4x + 4) - 6 - 4$$

$$y = (x + 2)^2 - 10$$

$$y = (x + 2)^2 - 10$$

$$y = (-2, -10)$$

3a)
$$y = (x^{2} + 4x) + 5$$

$$y = (x^{2} + 4x) + 5 - 4$$

$$y = (x^{2} + 4x) + 5 - 4$$
Perfect square
trinsmial
$$y = (x + 2) + 1$$
Vertex = $(-2, 1)$

4. Consider the function $f(x) = x^2$. The graph of f(x) is reflected over the x-axis, shifted 5 units to the right, and 2 units down to produce g(x). What is the equation of g(x)?

A
$$g(x) = -(x - 5)^2 - 2$$

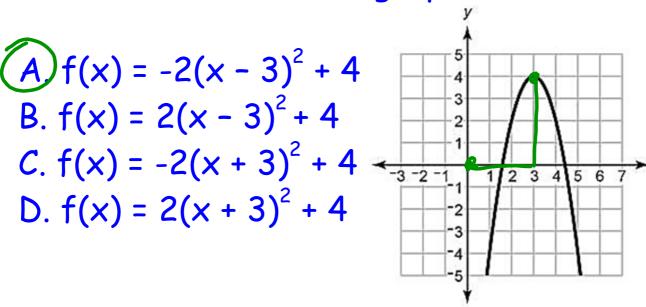
X $g(x) = (x - 5)^2 - 2$
C. $g(x) = -(x + 5)^2 - 2$
X. $g(x) = (x + 5)^2 - 2$

5. If the vertex of a parabola is (1, 2) and the graph opens down, which of the following could represent this function?

A.
$$f(x) = -(x + 1)^{2} + 2$$

X. $f(x) = -(x + 2)^{2} + 1$
X. $f(x) = (x - 1)^{2} + 2$
D) $f(x) = -(x - 1)^{2} + 2$

6. Using the parent function $f(x) = x^2$, which equation models the transformations of the graph?



7. Which quadratic equation stretches the parent function by a factor of 8 and shifts the function left 4 units?

$$\frac{1}{8}(x+4)^{2}$$

$$x = 8(x-4)^{2}$$

$$C. y = 8(x+4)^{2}$$

$$y = 8x^{2} - 4$$

8. Compared to the graph of

$$f(x) = x^2$$
, the graph of

$$g(x) = 2x^2 - 5$$
 is ______.

- (A.) narrower and translated down
- and translated up
 - C. wider and translated down
 - . wider and translated up

Essential Question 3/29/2021

How can I use the vertex and other characteristics of a quadratic function to model real life situations?

Learning Target

Applying vertex to real life situations.

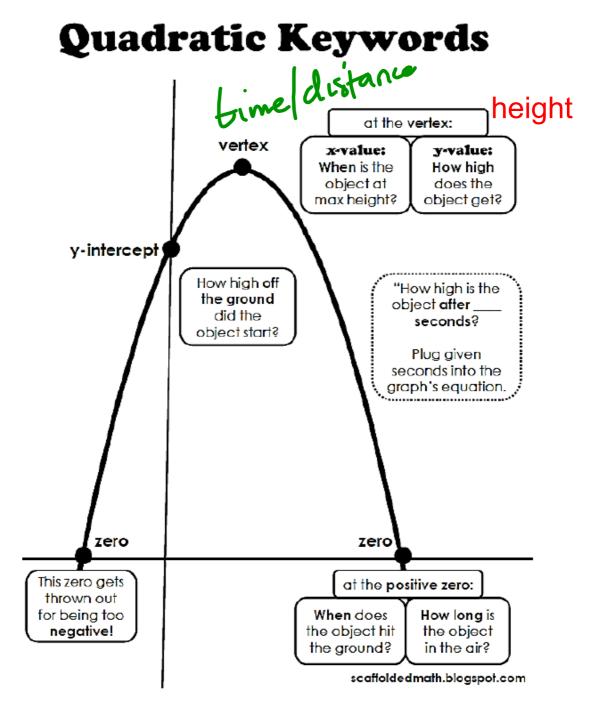
Applications of the Vertex

Standard(s): MGSE9-12.F.IF.4 Using tables, graphs, and verbal descriptions, interpret the key characteristics of a function which models the relationship between two quantities.

Note these!!!

 Words that Indicate Finding Vertex Minimum/Maximum Minimize/Maximize 	Quadratic Equations	
	Standard Form: $y = ax^2 + bx + c$	y-int: (0, c)
Least/GreatestSmallest/Largest	Vertex Form: $y = a(x - h)^2 + k$	vertex: (h, k)
, G	Factored Form: $y = a(x - p)(x - q)$	x-int: (p, 0) & (q, 0)

Word problems involve solving either for h or k of the vertex using $\chi = \frac{1}{2\alpha}$



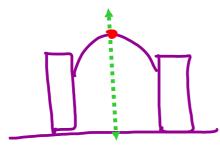
Scenario 1 - I do

Scenario 1. The arch of a bridge forms a parabola modeled by the function $y = -0.2(x - 40)^2 + 25$, where x is the horizontal distance (in feet) from the arch's left end and y is the corresponding vertical distance (in feet) from the base of the arch. How tall is the arch?

height $\rightarrow k$ or x-value of vertex given: $y = -0.2 (x-40)^2 + 25$ Vertex form (h,k) = (40, 25)

Therefore, the arch is 25ft tall.

No calculations needed here!



Scenario 2 - We do

Scenario 2. Suppose the flight of a launched bottle rocket can be modeled by the equation $y = -x^2 + 6x$, where y measures the rocket's height above the ground in meters and x represents the rocket's horizontal distance in meters from the launching spot at x = 0.

a. How far has the bottle rocket traveled horizontally when it reaches it maximum height? What is the maximum height the bottle rocket reaches?

$$y = -x^{2} + 6x$$
 $Q = -1 \quad b = 6$

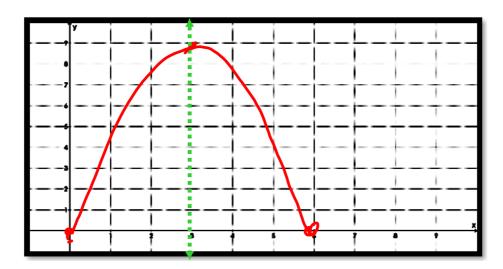
$$X = \frac{-b}{2(-1)} = \frac{-6}{2(-1)} = \frac{3}{2}$$

The bottle rocket travels 3 meters horizontally to reach its maximum height.

$$y = -(3)^2 + 6(3)$$

 $y = -9 + 18$
 $y = 9$ Vorten $(3,9)$

The rocket reaches a maximum height of 9 meters.



b. How far does the bottle rocket travel in the horizontal direction from launch to landing?

b)
$$-\chi^2 + 6\chi = 0$$

 $-\chi(\chi - 6) = 0$
 $-\chi = 0$
 $\chi = 0$
We cannot have a zero

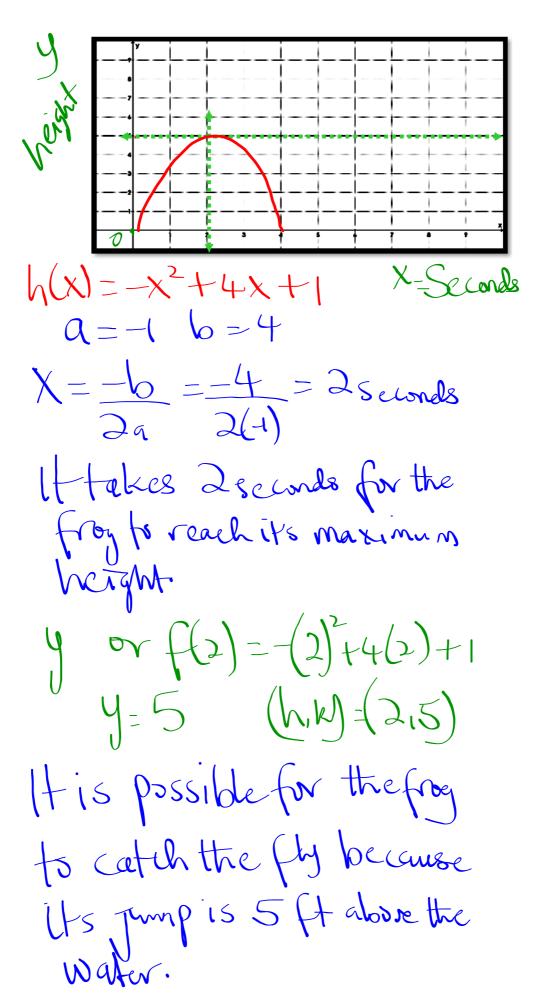
Je cannot have a Zent distance.

The bottle rocket travelled 6 meters from launch to landing.

Scenario 3 - You do

Scenario 3. A frog is about to hop from the bank of a creek. The path of the jump can be modeled by the equation $h(x) = -x^2 + 4x + 1$, where h(x) is the frog's height above the water and x is the number of seconds since the frog jumped. A fly is cruising at a height of 5 feet above the water. Is it possible for the frog to catch the fly, given the equation of the frog's jump?

Y-valye of vertex = height of Frog.



Scenario 4 - You do

Scenario 4. A model rocket is launched straight upward. The path of the rocket is modeled by $h = -16t^2 + 200t$, where h represents the height of the rocket and t represents the time in seconds.

a. What is its maximum height?

625 ft

b. Is it still in the air after 8 seconds? Explain why or why not.

$$h(8) = -16(8)^{2} + 200(8)$$
 $h(8) = 576ft$

Yes, the model rocket is still in the air after 8 seconds. The height of the model rocket is 576 ft after 8 seconds.

