1/15/2021

1. Given the perimeter is $6x^3 + 4x^2 + 3$ Find the missing side.

$$0 + 4x^{3}$$

$$- x^{3} + 2x^{2} + 3$$

$$3x^{3} + 2x^{2} + 3$$

$$(Sum of the 2sides)$$

$$(6x^{3} + 4x^{2} + 3) - (3x^{3} + 2x^{2} + 3)$$

$$6x^{3} + 4x^{2} + 3 + 2x^{2} + 3$$

$$- 3x^{3} - 2x^{2} - 3$$

$$- 3x^{3} + 2x^{2}$$

Find the product to the following expressions:

2.
$$(x - 15)(x - 3)$$

3.
$$(x+6)^2 = (x+6)(x+6)$$

 $x + 6$
 x

EOC Type Questions - Math Talks

- **1.** Andrew purchased some drinks and some chips. Each bag of chips cost \$2.00 and each drink cost 2x + 2.5y gives the total amount of money spent by Andrew on chips and drinks. What is the meaning of the term 2.5y?
 - A. The number of chips purchased by Andrew
 - B. The cost of one drink
 - C. The total amount spent on drinks by Andrew
 - D. The number of drinks purchased by Andrew

- **2.** The average amount of time it takes Greg to mow x lawns can be defined by the expression 28x + 5. In this scenario, what does the number 28 represent?
 - . The number of lawns Greg mows
 - B. The average time it takes to mow one lawn
 - The average price Greg charges per lawn
 - D. The average time it takes to mow multiple lawns

5. The length of a rectangle is 6 inches. The width is 3w inches.

If the coefficient of the width increases by 2, what could be an expression for the area of the rectangle?

A. $18w in^2$

- $B.30w in^2$
 - C. $6w + 12 in^2$
 - D. $10w + 12 in^2$

- **6.** The expression s^2 is used to calculate the area of a square, where s is the side length of the square. What does the expression $(5x)^2$ represent?
 - A. The area of a square with a side length of 5
 - B. The area of a square with a side length of 25
 - C. The area of a square with a side length of 5x
 - D. The area of a square with a side length of 25x

Essential Question 1/15/21

 How can I simplify Radical Expressions?

Unit 1

Day 5 - Simplifying Radical Expressions

What is a Radical?

Standard(s): MGSE9-12.N.RN.2

Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Square Root Table

Complete the table below.

Square each of the following numbers.

Perfect Squares

Take the square root of each of your perfect squares.

Square Roots

1	2	3	4	5	6	7	8	9	10	х
	4	5	16	25	36	49	64	81	dol	X2
√T		•							√100	
(2	3	4	5	6	7	60	9	Ø	X

Taking square roots and squaring a number are _____or they undo each other, just like adding and subtracting undo each other.

Review Factors

A factor is a <u>number</u> or mathematical <u>expression</u> that divides another number or expression evenly.

Example: What are the factors of the following?

a) 24

Chart of Perfect Squares 1 to 30

$1^2 = 1$	$11^2 = 121$	$21^2 = 441$
$2^2 = 4$	$12^2 = 144$	$22^2 = 484$
$3^2 = 9$	$13^2 = 169$	$23^2 = 529$
$4^2 = 16$	$14^2 = 196$	$24^2 = 576$
$5^2 = 25$	$15^2 = 225$	$25^2 = 625$
$6^2 = 36$	$16^2 = 256$	$26^2 = 676$
$7^2 = 49$	$17^2 = 289$	$27^2 = 729$
$8^2 = 64$	$18^2 = 324$	$28^2 = 784$
$9^2 = 81$	$19^2 = 361$	$29^2 = 841$
$10^2 = 100$	$20^2 = 400$	$30^2 = 900$

Perfect Square Roots Chart 1 – 50

$\sqrt{1} = 1$	$\sqrt{121} = 11$	$\sqrt{441} = 21$	$\sqrt{961} = 31$	$\sqrt{1681} = 41$
$\sqrt{4} = 2$	$\sqrt{144} = 12$	$\sqrt{484} = 22$	$\sqrt{1024} = 32$	$\sqrt{1764} = 42$
$\sqrt{9} = 3$	$\sqrt{169} = 13$	$\sqrt{529} = 23$	$\sqrt{1089} = 33$	$\sqrt{1849} = 43$
$\sqrt{16} = 4$	$\sqrt{196} = 14$	$\sqrt{576} = 24$	$\sqrt{1156} = 34$	$\sqrt{1936} = 44$
$\sqrt{25} = 5$	$\sqrt{225} = 15$	√ 625 =25	$\sqrt{1225} = 35$	$\sqrt{2025} = 45$
$\sqrt{36} = 6$	$\sqrt{256} = 16$	$\sqrt{676} = 26$	$\sqrt{1296} = 36$	$\sqrt{2116} = 46$
$\sqrt{49} = 7$	√ 289 =17	$\sqrt{729} = 27$	$\sqrt{1369} = 37$	$\sqrt{2209} = 47$
$\sqrt{64} = 8$	$\sqrt{324} = 18$	$\sqrt{784} = 28$	$\sqrt{1444} = 38$	$\sqrt{2304} = 48$
$\sqrt{81} = 9$	$\sqrt{361} = 19$	$\sqrt{841} = 29$	$\sqrt{1521} = 39$	$\sqrt{2401} = 49$
$\sqrt{100} = 10$	$\sqrt{400} = 20$	$\sqrt{900} = 30$	$\sqrt{1600} = 40$	$\sqrt{2500} = 50$

Simplifying Radicals

A radical expression is in **simplest form** if no perfect square factors other than 1 are in the radicand (ex. $\sqrt{20} = \sqrt{4\cdot5}$)

Guided Example: Simplify $\sqrt{80}$.	80 80
Step 1: Find the factors of the number inside the radical.	1 80 2 40 4 20 5 16
Step 2: Chose the pair of factors that contains the largest perfect square.	180 = 116.15
Step 3: Find the square root of the perfect square and leave the other root as is, since it cannot be simplified.	= 415
Step 4: Simplify the expressions both inside and outside the radical by multiplying.	>415

Simplifying Radicals Graphic Organizer

Perfect Square

Number is NOT a Perfect Square

List of Perfect Squares:

If the problem contains a perfect square:

- Find the square root
- The square root would be an integer

If the problem contains a number that is not a perfect square:

- Use the product of two square roots
- One of these roots should be a perfect square
- Find the square root of the perfect square, leave the other root as is.

Examples:

Examples:

1)
$$\sqrt{12} = \sqrt{4} \cdot \sqrt{3}$$

$$\sqrt{2} = 2\sqrt{3}$$

2)
$$\sqrt{32} = \sqrt{16} \cdot \sqrt{2}$$

(4) = 412

Exponent is even

Exponent is odd

If the problem contains an even exponent:

• Divide the exponent by 2

Examples:

$$\int_{1}^{1} \sqrt{x^4} = X^2$$

If the problem contains an odd exponent:

- Break the problem up into 2 powers
- One should have the highest even exponent
- The other exponent should be 1
- The sum of both exponents should be the original exponent

Examples:

amples:

1)
$$\sqrt{x^5} = \sqrt{x^7} \cdot \sqrt{x^7} = \sqrt{x^7}$$

2)
$$\sqrt{y^{11}} = \sqrt{y^{11}} = \sqrt{x^{1}}$$

Practice - I do

a.
$$\sqrt{25}$$

$$\sqrt{5.5} = 5$$

b.
$$\sqrt{24}$$

Practice - We do

Class Work Practice

Radicals with Variables

Step 1: If the problem contains an even exponent: Divide the exponent by 2 The radical sign goes away!	a) $\sqrt{x^4}$	b) $\sqrt{x^{50}}$	c) $\sqrt{x^3}$
Step 2: If the problem contains an odd exponent: Break the problem up into 2 powers One should have the highest even exponent The other exponent should be 1 The sum of both exponents should be the original exponent	=	=	X2. X
Step 3: Simplify the expressions both inside and outside the radical by multiplying.			XIX
a. $\sqrt{x^8}$ b. $\sqrt{x^5}$ $\sqrt{x^5}$		(YZ)	$C. \sqrt{y^4 z^3}$

Simplifying Radical Expressions

When simplifying radical expressions, you simplify both the coefficients and variables using the same methods as you did previously (Remember $\sqrt{x^2} = x$; square and square roots undo each other). **Remember, anything that is left over stays under the radical!**

Practice - We do

Practice - You do

Simplify this radical expression $3\sqrt{18a^4}$

Simplify this radical expression $-2\sqrt{36f^3g^4}$

Simplify this radical expression $5\sqrt{20x^{16}y^{10}}$

Simplify this radical expression $2\sqrt{27a^4b}$

Simplify this radical expression $-\sqrt{54m^4n^2}$

Simplify this radical expression $-8\sqrt{48g^4h^7}$

Extra Practice

SIMPLIFYING RADICAL EXPRESSIONS

1, 4, 9, 16, 25, ____, ____, ____, ____, 144... Perfect Squares:

 x^2 , x^4 , x^6 , ____, ___... Exponents must be _____.

 $\sqrt{25}$ is read "the square root of 25".

$$\sqrt{25} = 5$$
 because $5^2 = 25$ $\sqrt{36} = 6$ because ___ = ___ $\sqrt{100} =$ ____ $\sqrt{49} =$ ____

$$\sqrt{100} =$$

$$\sqrt{a^6} = a^3$$
 because $(a^3)^2 = a^6$ $\sqrt{m^{16}} = m^8$ because ___ = ___ $\sqrt{y^{10}} =$ ____ $\sqrt{a^2} =$ ____

In the expression \sqrt{a} , the $\sqrt{}$ is called the radical and a is called the radicand.

Simplify (Simplifying Perfect Squares):

1.
$$\sqrt{4}$$

2.
$$\sqrt{16}$$

1.
$$\sqrt{4}$$
 2. $\sqrt{16}$ 3. $-\sqrt{100}$ 4. $\sqrt{a^8}$

4.
$$\sqrt{a^8}$$

5.
$$\sqrt{w^{12}}$$

6.
$$\sqrt{a^6b^{10}}$$

$$7 \sqrt{9a^2}$$

$$8 - \sqrt{81m^{64}}$$

6.
$$\sqrt{a^6b^{10}}$$
 7. $\sqrt{9a^2}$ 8. $-\sqrt{81m^{64}}$ 9. $\sqrt{49a^4b^{12}}$

10.
$$\sqrt{121x^{14}y^6}$$

Extra Practice

Simplify (Simplifying Radicals that are not Perfect Squares):

1.
$$\sqrt{20} = \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5}$$

1.
$$\sqrt{20} = \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5}$$
 2. $\sqrt{27} = \sqrt{9}\sqrt{3} = 3\sqrt{3}$ 3. $\sqrt{48} = \sqrt{16}\sqrt{3} = 4\sqrt{3}$

3.
$$\sqrt{48} = \sqrt{16}\sqrt{3} = 4\sqrt{3}$$

4.
$$\sqrt{45} = \sqrt{100} = 100$$

4.
$$\sqrt{45} = \sqrt{12} = \sqrt$$

6.
$$\sqrt{50} =$$

7.
$$\sqrt{a^5} = \sqrt{a^4} \sqrt{a} = a^2 \sqrt{a}$$

7.
$$\sqrt{a^5} = \sqrt{a^4} \sqrt{a} = a^2 \sqrt{a}$$
 8. $\sqrt{x^9} = \sqrt{100} \sqrt{100} = \frac{1}{100} \sqrt{100} = \frac{1$

9.
$$\sqrt{x^3} =$$

Simplify:

1.
$$\sqrt{18}$$

2.
$$\sqrt{125}$$

3.
$$\sqrt{72}$$

4.
$$\sqrt{180}$$

$$1. \sqrt{18}$$
 2. $\sqrt{125}$ 3. $\sqrt{72}$ 4. $\sqrt{180}$ 5. $\sqrt{\mathbf{a}^3}$

6.
$$\sqrt{b^7}$$

7.
$$\sqrt{m^{11}}$$

6.
$$\sqrt{b^7}$$
 7. $\sqrt{\mathsf{m}^{11}}$ 8. $\sqrt{75x^7y^5}$ 9. $\sqrt{27a^{11}b^7}$ 10. $\sqrt{32a^7b^4}$

9.
$$\sqrt{27a^{11}b^7}$$

10.
$$\sqrt{32a^7b^4}$$

11.
$$\sqrt{9a^8}$$

$$12 \sqrt{45a^7}$$

$$\sqrt{36x^2v^6}$$

11.
$$\sqrt{9a^8}$$
 12. $\sqrt{45a^7}$ 13. $\sqrt{36x^2y^6}$ 14. $\sqrt{12x^{20}y^8}$ 15. $-\sqrt{200}$

15.
$$-\sqrt{200}$$

16.
$$\sqrt{196}$$

17.
$$\sqrt{63x^4y}$$

18.
$$\sqrt{6x^3}$$

19.
$$\sqrt{100x^5y}$$

16.
$$\sqrt{196}$$
 17. $\sqrt{63x^4y}$ 18. $\sqrt{6x^3}$ 19. $\sqrt{100x^5y}$ 20. $\sqrt{80x^{100}y^{49}}$

Extra Practice

Homework Simplifying Radicals	Name
	Class Time
Simplify each of the following expressions completely	

_____4.
$$\sqrt{50}$$
 _____5. $\sqrt{400}$ _____6. $\sqrt{x^6}$

______7.
$$\sqrt{x^7}$$
 ______8. $\sqrt{16x^{16}}$ _____9. $\sqrt{9x^9}$

_____10.
$$\sqrt{40x^8}$$
 _____11. $\sqrt{25x^7}$ _____12. $\sqrt{12x^5}$

_____13.
$$\sqrt{a^2b^4}$$
 _____14. $\sqrt{49a^8x^{12}}$ _____15. $\sqrt{28x^9y^6}$

_____16.
$$\sqrt{32m^7n^{11}}$$
 _____17. $\sqrt{20x^{10}y^5}$ _____18. $\sqrt{100ab^4}$

