Warm-Up (EOC-Type) 3/24/2021

The product of two consecutive positive odd integers is k. Rachel uses the following steps to solve for k.

Step 1:
$$(x)(x + 1) = k$$

Step 2:
$$x^2 + x - k = 0$$

Step 3:
$$x = \frac{-1 - \sqrt{1 + 4k}}{2}$$
, $x = \frac{-1 + \sqrt{1 + 4k}}{2}$

Step 4: Reject extraneous solution

$$x = \frac{-1 - \sqrt{1 + 4k}}{2}$$

because x must be positive.

Which best describes Rachel's error?

- A. Rachel's error is in Step 1; her factors should be (x) and (x + 2).
- **B.** Rachel's error is in Step 2; the final term *k* should be added instead of subtracted.
- C. Rachel's error is in Step 3; the term 4k should be subtracted in each discriminant.
- D. Rachel's error is in Step 4; she does not have enough information to determine whether either solution is extraneous.

Go to Nearpod

Quadratic Functions - Standard Form

Name: _______ 0 1 2 3 4

1. What is the value of the function $f(x) = x^2 - 5x + 2$ evaluated at x = 2?

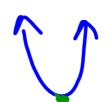
A.
$$f(2) = 16$$

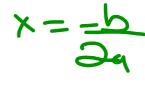
B.
$$f(2) = 6$$

$$C. f(2) = 2$$

D.
$$f(2) = -4$$

2. The axis of symmetry of a parabola does not always contain which point?


3. Does the function $f(x) = x^2 - 10x + 18$ have a maximum or a minimum and what is its value?


Maximum at
$$y = 93$$

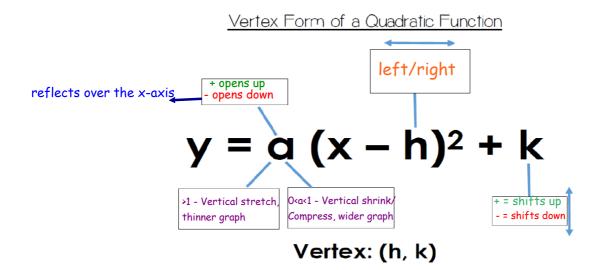
B. Minimum at
$$y = 93$$

$$\mathbf{X}$$
. Maximum at y = -7

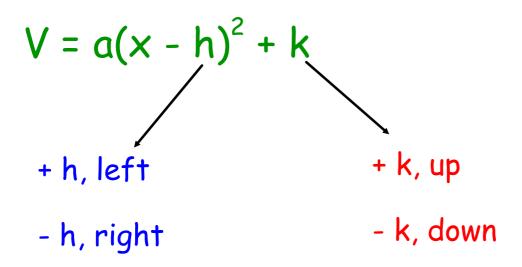
D. Minimum at
$$y = -7$$

Essential Question 3/24/2021

How can I graph a Quadratic function from the vertex form of the equation?


Learning Target

Graphing quadratic function in vertex form


Graphing in Vertex Form

Standard(s): MGSE9-12.F.IF.7 Graph functions expressed algebraically and show key features of the graph both by hand and by using technology.

Transformation of a Parabola: A-Value

Transformation of a Parabola: h & k values

Transformations

The <u>axis</u> of <u>symmetry</u> is x = h. (Opposite of h)

The <u>vertex</u> is on the axis of symmetry line at (h, k). Remember: the sign of "h" is the opposite.

The a-value determines whether your graph "goes up" on both sides or "goes down" on both sides of your vertex.

opens up : a-value is positive (looks like a "U")
 opens down: a-value is negative (looks like an "\")")

A good <u>PARABOLA</u> has at least five points. Make a table of values with your vertex in the middle and plot them to make a good graph.

Transformations

- If the a-value is negative, your graph has been <u>REFLECTED</u> over the x-axis.
- If the a-value (ignoring the negative) is less than one, your graph has been <u>SHRUNK</u> or <u>COMPRESSED</u> vertically.
- If the a-value (ignoring the negative) is bigger than one, your graph has been <u>STRETCHED</u> vertically.
- The location of the vertex determines where the graph has been <u>SHIFTED</u> or <u>TRANSLATED</u>.

^{*} If the vertex is not on 0, 0, then the Parabola has been shifted or translated.

Identifying the Vertex

Find the vertex of the following:

1)
$$y = (x - 18)^2 + 9$$
 Vertex = $(18, 9)$

2)
$$y = 4(x + 6)^2 - 7$$
 Vertex = $(-6, -7)$

3)
$$y = (x-2)^2-2$$
 Vertex = $(2, -2)$

Find the vertex for each of the following quadratics and determine whether the graph opens up or down:

a)
$$y = (x-1)^2 - 2$$
 Vertex = $(1, -2)$ Graph Opens $y = (x-1)^2 - 2$ because a is $y = (x-1)^2 - 2$

b)
$$y = -3(x + 4)^2 + 1$$
 Vertex = (-4) , Graph Opens down because a is $-$

c)
$$y = 2x^2 + 3$$
 Vertex = $(0, 3)$ Graph Opens p because a is p

d)
$$y = -(x - 3)^2$$
 Vertex = $(3, 0)$ Graph Opens down because a is $\underline{}$

On your calculator:

- 1. Press Table
- 2. Enter function $(x-2)^2 2$ and enter

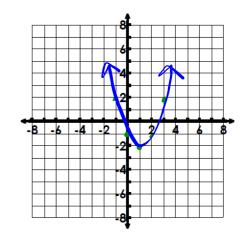
Press X_{abc}^{yzt} for the x variable.

3. Press enter 4 times

Graphing in Vertex Form

Example I - I do

Example 1: Graph $y = (x - 1)^2 - 2$.


$$a = \begin{cases} h = \\ k = - \\ \lambda \end{cases}$$

Transformations?
Right by lunit
clown by Zunits

	`	-
(L	p)or Down?	
_	•)	
Λ	Naximum of Minin	nom\$

	Maximum of Minimum?
\ /	1 (4 = - 2)
\ <u></u>	minimum

Х	У
-1	2
0	-
l	-2
2	-I
3	2

Example 2 - You do

Example 2: Graph: $y = -3(x + 4)^2 + 1$.

$$a = -3h = -4k = 1$$

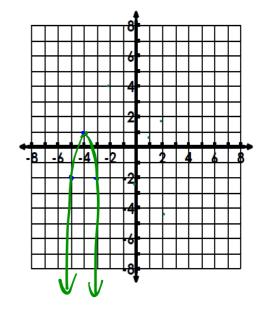
Vertex = $(-4, 1)$

Transformations?

O Reflects over x-axis

O Vertical Stretch by a

Factor 3


G up boy 1

Up or Down?

Maximum or Minimum?

Y=1

х	У
-6	-11
-5	-2
-4	-
-3	一之
- 2	-11

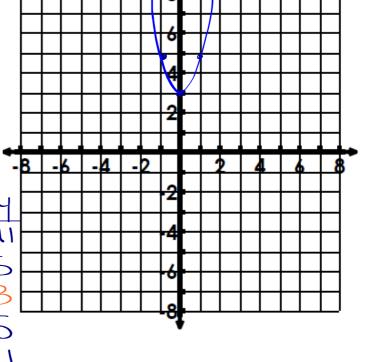
Example 3 - You do

Example 3: Graph $y = 2x^2 + 3$.

$$a = 2$$
 $h = 0$ $k = 3$

$$(h,k) \text{ Vertex} = (0, 3)$$

Transformations?


1) Vertical stretch by 4

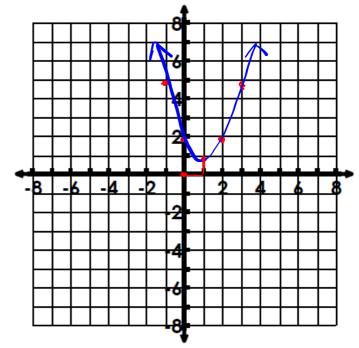
Up or Down? -1 5

Maximum or Minimum? 0 3

1 5
2 11

Find the vertex and state the minimum or maximum.

a. $y = 2(x - 28)^2 + 72$ Vertex = (28, 72)Minimum: y = 72b. $y = (x + 500)^2 - 250$ Vertex = (-500, -250)Minimum: y = -250c. $y = -(x + 22)^2 + 22$ Vertex = (-22, 22)Maximum = y = 22

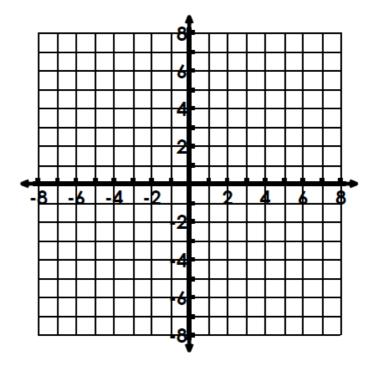

Quick
Check - 2

Graph the quadratic function.

$$y = (x - 1)^2 + 1$$

Vertex: (| |)

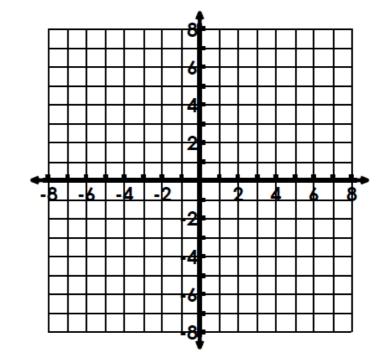
Х	У
-\	5
0	2
1	1
2	2
3	5


Transformations:

. ⇒Right by lunit ⇒Up by lunit

Graph the quadratic function.

$$y = (x + 3)^2 + 3$$


Vertex:

Х	У

Graph the quadratic function.

$$-2(x-2)^2+4$$

Vertex:

Х	У

Math Talks - (EOC Type Question)

Which of the following equations represents a parabola that reaches its maximum value at (5, 13)?

$$y = (x + 5)^2 - 13$$

$$y = (x - 5)^2 + 13$$

$$y = (x - 5)^2 + 13$$
$$y = -(x + 5)^2 - 13$$

$$y = -(x - 5)^2 + 13$$

Practice Finding the Vertex by Completing the Squares - I do

1)
$$f(x) = (x^2 + 6x) + 11$$

 $\overline{2} = 3^2 = 9$
 $f(x) = (x^2 + 6x) + 11 - 9$
Perfect square
 $f(x) = (x + 3) + 2$
 $f(x) = (x + 3) + 2$
 $f(x) = (-3, 2)$

Finding Vertex - We do!

2)
$$y = (x^2 - 10x) + 2$$

$$2 = (-5)^2 = (25)$$

$$4 = (x^2 - 10x + 25) + 2 - 25$$

$$4 = (x - 5)^2 - 25$$

3)
$$y = 2x^2 - 12x + 16$$

$$y = (x^{2} - 6x) + 8$$

$$y = (-3)^{2} = (9)$$

$$y = (x^2 - 6x + 9) + 8 - 9$$

$$\int_{-1}^{2} (x-3)^{2}$$

4)
$$h(x) = -2x^{2} + 8x - 4$$

$$-2$$

$$h(x) = (x^{2} - 4x) + 3$$

$$\lambda(x) = (x^{2} + 4x) + 2 - 4$$

$$h(x) = (x^{2} - 4x) + 2 - 4$$

$$h(x) = (x^{2} - 2) - 2$$

$$h(x) = (x^{2} - 2) - 2$$

$$h(x) = (x^{2} - 2) - 2$$

5)
$$g(x) = -3x^{2} + 24x - 42$$

$$-3$$

$$g(x) = (x^{2} - 8x) + 14$$

$$2 = (4)^{2} = (5)$$

$$g(x) = (x^{2} - 8x + 16) + 14 - 16$$

$$g(x) = (x - 4)^{2} - 2$$

$$h$$

$$Verfex = (4, -2)$$

6)
$$h(x) = 6x^{2} - 84x + 288$$

$$h(x) = (x^{2} - 14x) + 48$$

$$a = (7)^{2} - 49$$

$$h(x) = (x^{2} - 14x) + 49 + 49$$

$$h(x) = (x - 7)^{2} - 1$$

$$h(x) = (x - 7)^{2} - 1$$