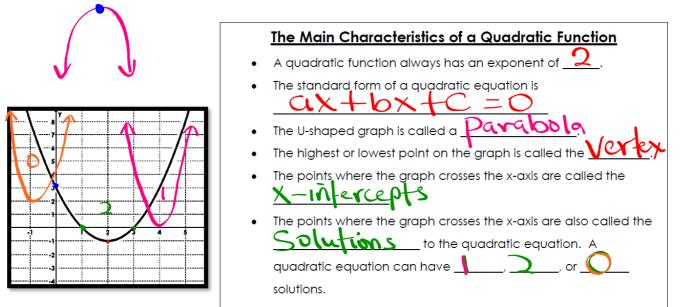
Solving Quadratics (GCF, when a = 1, when a not 1)

Standard(s): MGSE9-12.A.REI.4 Solve quadratic equations in one variable.

Take a look at the following graph. Do you know what type of graph it is? List some of the things you see:

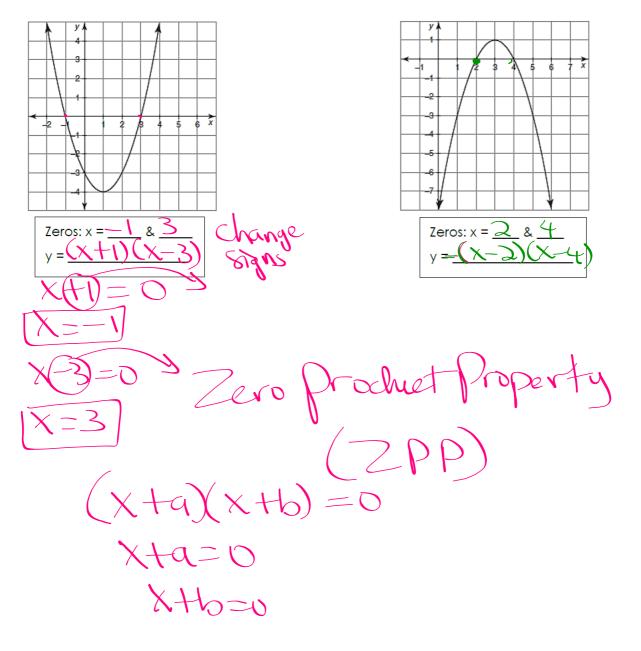


Exploration with Factoring and Quadratic Graphs

In this unit, we are going to explore how to solve quadratic equations.

Solving a quadratic equation really means: Finding its <u>Solution</u>, <u>X-intercept voots</u> or <u>2005</u>.

Create an equation to represent the following graphs:



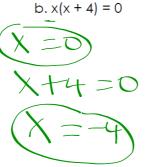
Zero Product Property and Factored Form

Zero Product Property

- $50 \underline{VC}$ an equation when one side is zero and • The zero-product property is used to the other side is a product of binomial factors.
- The zero product property states that if $a \cdot b = 0$, then a = 0 or b = 0

Examples: Identify the zeros of the functions:

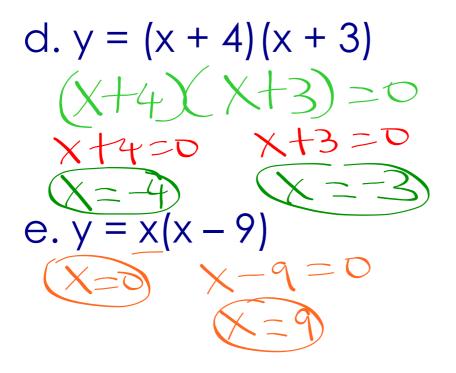
a. (x-2)(x+4) = 0

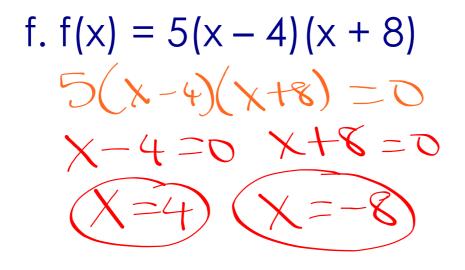


c. $(x + 3)^2 = 0$ $(\chi + 3)$ (+3)

do

Practice: Identify the Zeros of the function - You do





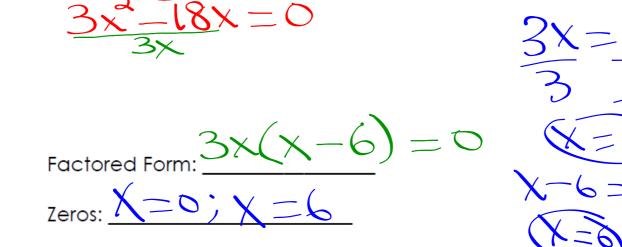
(18)

1. 3x² =

1: Factoring & Solving Quadratic Equations - GCF

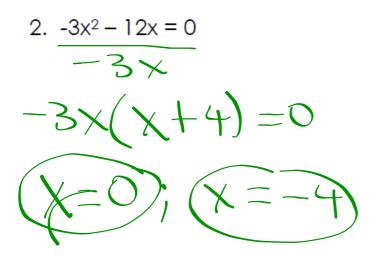
Solve the following quadratic equations by factoring (GCF) and using the Zero Product Property.

Practice - I do: Solve the following equations by factoring out the GCF.



Practice - You do

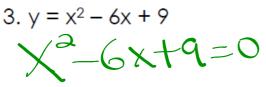
Solve the following equations by factoring out the GCF:

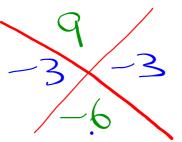


Factored Form: $\underline{-3}_{X}(X+4) = D$ Zeros: $\underline{X} = 0$; $\underline{X} = -4$

2: Factoring & Solving Quadratic Equations when a = 1 we do

Solve the following quadratic equations by factoring and using the Zero Product Property.

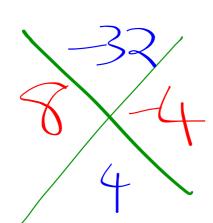


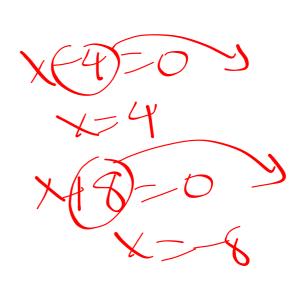


Factored Form: Zeros

Practice - You do

Solve the following equations by factoring and using the ZPP:





Factored Form: $(\chi - 4)(\chi + 8) =$	$=\mathcal{O}$
Zeros: $X = 4; X = -8$	

 $5x^{2}+14x^{-3}$

5

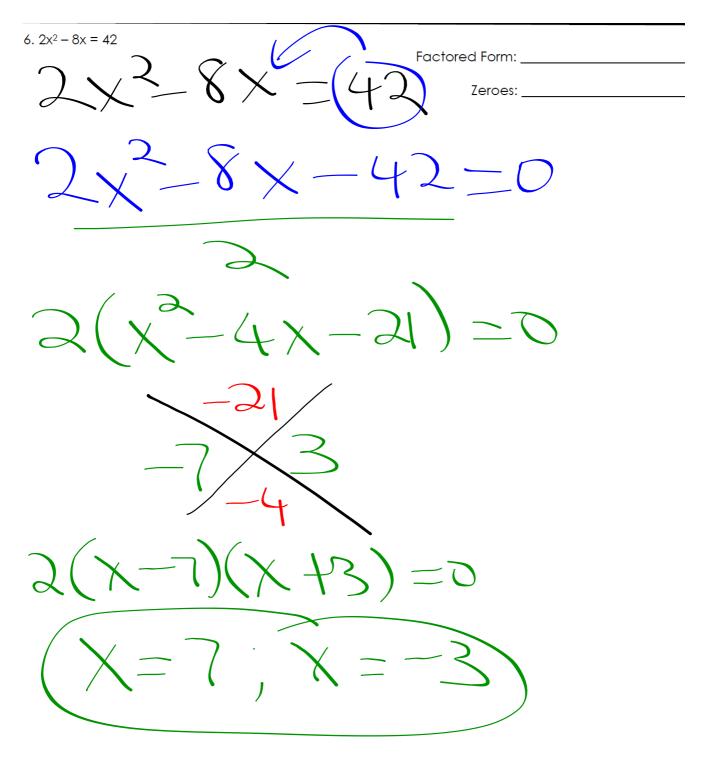
3: Factoring & Solving Quadratic Equations when a not 1

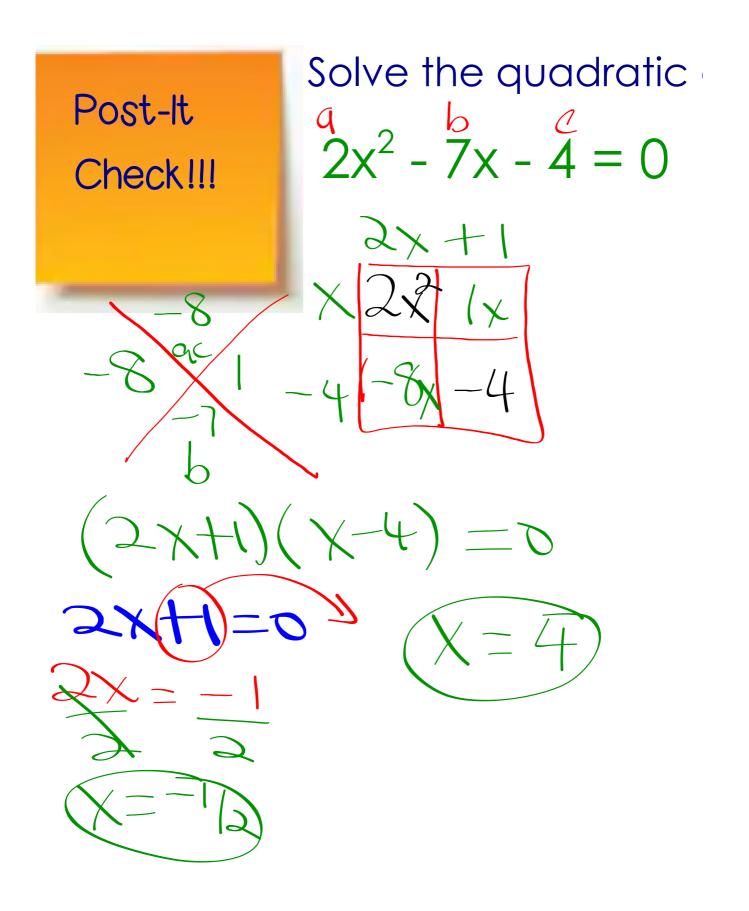
Solve the following quadratic equations by factoring and using the Zero Product Property. Practice - I do: $5. y = 5x^2 + 14x - 3$

Factored Form: (X+3)(5x-1) = 0Zeroes: X = -3; $X = \frac{15}{5}$

9

Practice - You do:





Review: Methods for Factoring

Before you factor any expression, you must always check for and factor out a Greatest Common Factor (GCF)!

	Looks Like	How to Factor	Examples
GCF (Two Terms)	ax² - bx	Factor out what is common to both terms (mentally or list method) $2m^2$ (mm -8m -12)22 m 2m(m - 4)	$x^{2} + 5x = x(x + 5)$ $18x^{2} - 6x = 6x(3x - 1)$ $-9x^{2} - x = -x(9x + 1)$
A = 1	x ² + bx + c	Think of what two numbers multiply to get the c term and add to get the b term (Think of the diamond). You also need to think about the signs: $x^{2} + bx + c = (x + \#)(x + \#)$ $x^{2} - bx + c = (x - \#)(x - \#)$ $x^{2} - bx - c/x^{2} + bx - c = (x + \#)(x - \#)$	$x^{2} + 8x + 7 = (x + 7)(x + 1)$ $x^{2} - 5x + 6 = (x - 2)(x - 3)$ $x^{2} - x - 56 = (x + 7)(x - 8)$
A not 1	ax ² + bx + c	Area Model: $3x^2 - 5x - 12$ 3x + 4 $x 3x^2 + 4x$ -3 -9x - 12 Factored Form : $(x - 3) (3x + 4)$	$9x^{2} - 11x + 2 = (9x - 2) (x - 1)$ $2x^{2} + 15x + 7 = (2x + 1)(x + 7)$ $3x^{2} - 5x - 28 = (2x + 7)(x - 4)$
Difference of Two Squares	x ² – c	Both your "a" and "c" terms should be perfect squares and since there is no "b" term, it has a value of 0. You must also be subtracting the a and c terms. Your binomials will be the exact same except for opposite signs. Difference of Squares $a^2 - b^2 = (a + b)(a - b)$	$x^{2} - 9 = (x + 3)(x - 3)$ $x^{2} - 100 = (x + 10)(x - 10)$ $4x^{2} - 25 = (2x + 5)(2x - 5)$
Perfect Square Trinomials	x ² + bx + c "c" is a perfect square "b" is double the square root of c	Factor like you would for when a = 1	$x^{2} - 6x + 9 = (x - 3)(x - 3)$ $= (x - 3)^{2}$ $x^{2} + 16x + 64 = (x + 8)(x + 8)$ $= (x + 8)^{2}$

Functions notation.ppt

Functions Practice HW.docx

Functions notation notes.ppt

Factoring Quiz Review.ks-ia1