Warm-Up (EOC-Type Questions) 3/22/2021

The formula $a = \frac{1}{2}rp$ describes the relationship of the area of a regular polygon, a, to the length of its apothem, r, and perimeter, p. Which describes the relationship of the apothem of a regular polygon to its area and perimeter?

B.
$$r = \frac{a}{2p}$$

C.
$$r = 2ap$$

$$p = \frac{2a}{p}$$

$$q = \frac{2a}{p}$$

2

Which ordered pair represents a solution to the function graphed below?

Juit 2

- **(A.)** (6, 0)
- **C.** (4, 1)
- **B.** (-2, 2)
- **D.** (2, -3)

Which of the following shows a linear function that does not have the same *y*-intercept as each of the other linear functions shown?

C.

В.

D.

Warm-Up 3/23/2021

- 1. $m^2 5 = 19$ Solve for m.
- 2. $(x 4)^2 = 48$ Solve for x.
- 3. Find the zeros: $x^2 + 8x 20 = y$
- 4. What value must be added to the equation to complete the square in the quadratic equation $x^2 10x = 9$
- 5. Solve the equation by completing the square. $x^2 + 6x = 11$

6. Solve for x in the equation using the quadratic formula and explain how you got your solution.

$$6x^{2} + 17x - 6 = -11$$

$$+ 11 + 11$$

$$6x^{2} + 17x + 5 = 0 \quad a = 6 \quad b = 17c = 5$$

$$X = -b \pm \sqrt{b^{2}} - 4ac$$

$$X = -17 \pm \sqrt{17^{2}} - (4.6.5) \quad calculator$$

$$2(6)$$

$$X = -17 \pm 13$$

$$12$$

$$X = -17 \pm 13 \quad and \quad -17 - 13$$

$$12$$

$$X = -\frac{1}{3} \quad and \quad -\frac{5}{3}$$

Do your missing tests/Remediation tests!

Remember to do deltamath on assignments that you have zeros or a failing grade!!!

Essential Question 3/22/2021

How can I graph a Quadratic function from the standard form of the equation?

Learning Target

Graph quadratic functions in standard form $Qx^2 + bx + c$

Graphing in Standard Form

Standard(s): MGSE9-12.F.IF.7 Graph functions expressed algebraically and show key features of the graph both by hand and by using technology.

The **parent function** of a function is the simplest form of a function.

The parent function for a quadratic function is $y = x^2$ or $f(x) = x^2$. Graph the parent function below.

х	X ²
-3	9
-2	4
-1	1
0	0
1	
2	4
3	9

Graphing in Standard Form

Standard Form of a Quadratic Function:

$$y = ax^2 + bx + c$$

The axis of symmetric is $x = \frac{-b}{2a}$

The a-value determines whether your graph "goes up" on both sides or "goes down" on both sides of your vertex.

- **Pers** : a-value is positive (looks like a "U")
- Ofens down: a-value is negative (looks like an "∩")

The Solutions / Zeros / X-interests roots are where y = 0.

You can either solve the equation $0 = ax^2 + bx + c$, to find the <u>roots or look for where</u> y = 0 in your table.

The $\sqrt{-intercept}$ is where x = 0. This will be the point (0, c).

A good <u>PARABOLA</u> has at least five points. Make a table of values with your vertex in the middle and plot them to make a good graph.

Steps for Graphing in Standard Form

- 1) Find the vertex.
 - Use $x = \frac{-b}{2a}$ to find our x-coordinate of our vertex
 - Substitute that x back into our equation, and our solution is the y-coordinate of our vertex.
- 2) Use your vertex as the center for your table and determine two x values to the left and right of your x-coordinate and substitute those x values back into the equation to determine the y values.
- 3) Plot your points and connect them from left to right! Your table MUST have 5 points!

Example: Graph $y = -2x^2 - 4x + 6$

$$a = -2$$
 $b = -4$ $c = 6$

$$x = \frac{-b}{2a} = \frac{-(-4)}{2(-2)} = \frac{4}{-4} = -1$$

$$y = -2(-1)^2 - 4(-1) + 6 = 8$$

X	Y	
-3	0	
-2	6	
-1	8	
0	6	
1	0	

This parabola has an $\underbrace{\text{OXUS of Symmetry}}_{\text{at }x=-1}$, a $\underbrace{\text{Vertex}}_{\text{at }(-1,8)}$ which is also considered of

Maximum a 4-intercept at (0,6), and x-intercept at (-3,0) and (1,0).

Practice with Graphing in Standard Form - I do

Example 1: Graph $y = x^2 - 2x - 3$

$$a = |b = -2c = -3$$
Vertex? (|,-4)
$$X = \frac{-b}{aa} = \frac{-(-2)}{2(1)} = |$$

$$f(1) = (1)^{2} - 2(1) - 3 = -4$$

Х	У
-1	0
0	-3
1	-4
\mathcal{Z}	-3
ω	0

Practice with Graphing in Standard Form - We do

Practice with Graphing in Standard Form - You do

Example 3: Graph $y = 2x^2 + 3$.

$$t(0) = 2(0)^{2} + 3 = 3$$

Y-Intercepts? None

Х	У
-2	1/
-1	5
0	3
1	5
2	11

Practice with Graphing in Standard Form - You do

Example 4: Graph: $y = -x^2 + 6x - 9$

$$a = -1b = 6c = -9$$

Vertex? (3,0)
 $X = -\frac{b}{2a} = \frac{-6}{2(-1)} = 3$
 $f(3) = -(3)^{2} + 6(3) - 9 = 0$

	(0 -0)
Y-Intercept?	
V Intercente?	1 5.01
Up or Down?	a is negative
Maximum or N	Minimum?

0	-9
Х	У
(-4
2	-1
3	0
4	-1
5	-4
6	-9

Graph the quadratic function. You must show how you calculated the vertex and show a table with 5 ordered pairs.

$$a = 1 b = 6 c = 6$$

$$X = = b = -6 = -3$$

$$A = -3 = -3 + 6 + 6 + 6$$

$$A = -3 = -3$$

$$A = -3$$

Quick

Check - 2

Х	У
-4	-3
-3	0
-7	1
-,	O
O	<u>م</u>

Graph the quadratic function. You must show how you calculated the vertex and show a table with 5 ordered pairs.

$$y = -x^2 - 4x - 3$$

$$\alpha = -1 \quad b = -4 \\
X = -b = -(-4) = -2 \\
A(-1) = -2 \\
f(-2) = -(-2) - 4(-2) - 3 \\
f(-2) = 1$$

$$V = (-2, 1)$$

Closing (EOC Type Question)

Which describes all of the x- and y-intercepts of the function below?

$$f(x) = -\frac{1}{4}(x + 8)^2$$

- **A.** (-16, 0), (0, 8), and (16, 0)
- **B.** (0, -16), (0, 16), and (8, 0)
- C. (−8, 0) and (0, −16)

Closing (EOC Type Question)

Which of the following graphs displays a quadratic relation that is **not** a function?

A.

В.

D.

