Warm-Up

2/4/2021

slides 8,9

1. Solve this system by

substitution

$$x = y + 4$$

$$2y + x = 19$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 3y + 4 = 19 \\
 3y = 15 \\
 3y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 3y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 3y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 3y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 3y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 19
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 19
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 3y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y = 15
 \end{array}$$

$$\begin{array}{c}
 4y + 4 = 19 \\
 4y + 4 = 19
 \end{array}$$

2. Solve the system by graphing.

$$0 \times ty = 2 \times$$

$$y = 2 \times -2$$

$$M = 2 \quad b = -3$$

$$Slope: Vise Starting Points
$$y = 2 \times +5$$

$$M = 2 \quad b = 5$$

$$M = 2 \quad b = 5$$$$

3. Solve for b:
$$A = \frac{Bh}{2}$$

$$2A = \frac{Bh}{2}$$

$$2A = \frac{Bh}{2}$$

$$A = \frac{Bh}{2}$$

$$A = \frac{Bh}{2}$$

$$A = \frac{Bh}{2}$$

Essential Question 2/5/2021

 How can solve systems of equations by elimination?

Learning Target

Solving Systems by Elimination

Solving Systems by Elimination

Standard(s):

MGSE9-12.A.REI.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

MGSE9-12.A.REI.5 Show and explain why the elimination method works to solve a system of two-variable equations.

- Another method for solving systems of equations when one of the variables is not isolated by a variable
 is to use elimination.
- Elimination involves adding or multiplying one or both equations until one of the variables can be eliminated by adding the two equations together.

Steps for Solving Systems by Elimination

Steps for Solving Systems by Elimination

- **Step 1:** Arrange the equations with like terms in columns.
- **Step 2:** Analyze the coefficients of x or y. Multiply one or both equations by an appropriate number to obtain new coefficients that are opposites
- **Step 3:** Add the equations and solve for the remaining variable.
- Step 4: Substitute the value into either equation and solve.

Elimination by Adding the Systems Together

Ex 1.
$$-2x + y = -7$$

 $+(2x - 2y = 8)$
 $-2x = -7$
 $-3x = -6$
 $-3x = -6$
 $-3x = -6$
 $-3x = -6$
 $-3x = -3$

Solution: (3, -1)

Practice - You Try

Ex 2.
$$4x-2/=2$$
 $+(3x+2y=12)$
 $4(2)-2y=2$
 $-2y=2$
 $-2y=2$
 $-2y=2$
Solution:

 $(2, 3)$

Elimination by Rearranging and Adding the Systems Together

Slide 10

Ex 3.
$$8x = -16 - 4$$

 $3x - y = 5$
 $8(-1) = -16 - 4$
 $8x + y = -16 - 8 = -16 - 4$
 $3x + y = 5$
 $11x = -11$
 $11x = -11$
Solution: $(-1, -8)$

Practice - You Try

Ex 4.
$$2x + y = 8$$

 $-y = 3 + 2x$

Solution:

Elimination by Multiplying the Equations and Then Adding the Equations Together

Ex 5.
$$x + 12y = -15$$

$$-2x - 6y = -6$$

$$x + 12y = -15$$

Practice - WE DO!

Ex 6.
$$\begin{bmatrix} 6x + 8y = 12 \\ 2x - 5y = -19 \end{bmatrix}$$
 X-3 $\begin{bmatrix} 2x - 5(3) = -19 \\ 2x - 5y = -19 \end{bmatrix}$ X-3 $\begin{bmatrix} 2x - 19 + 15 \\ 2x - 19 \end{bmatrix}$ $\begin{bmatrix} 2x - 19 + 15 \\ 2x - 19 \end{bmatrix}$ $\begin{bmatrix} 2x - 19 + 15 \\ 2x - 19 \end{bmatrix}$ $\begin{bmatrix} 2x - 19 + 15 \\ 2x - 19 \end{bmatrix}$ Solution: $\begin{bmatrix} -2 & 3 \\ 2 & 3 \end{bmatrix}$

Elimination by Multiplying the Equations by a Constant and Then Adding the Equations Together

b. -6x + 12y = -6) $\times 5$

$$\frac{-5x + 10y = -5) x - 6}{-30x + 60y = -30}$$

$$\frac{-30x + 60y = -30}{(+30x - 60y = 30)}$$

$$\frac{-30}{(+30x - 60y = -30)}$$

$$\frac{-30}{(-30x - 60y = -30)}$$

Solution:

		Number of Solutions		
		One Solution	Infinitely Many Solutions	No Solution
Solving Methods	Graphing	y = 3x - 5 $y = -x - 1$	(a) -3y = 12 (b) x - 3y = 12 (c) x - 3x = 12 (d) x - 3x = 12	3x-2y = 2 3x-2y = -2
		When graphed, the 2 lines intersect once.	When graphed, the 2 lines lie on top of one another.	When graphed, the 2 lines are strictly parallel .
	Elimination Substitution	When using either substitution or elimination, you should get a value for either x or y. You should be able to find the other value by substituting either x or y back into the original equation.	When using either substitution or elimination, you will get an equation that has no variable and is always true . For example: 2=2 or -5=-5	When using either substitution or elimination, you will get an equation that has no variable and is never true . For example: 0=6 or -2=4

Home Work

2/5/2021

Edpuzzle Videos

- Graphing Systems of Linear Equations
- 2. Solving Systems by Substitution
- 3. Elimination

Closing: 2/5/2021

In your own words, write the steps for solving systems by graphing, substitution, and elimination.