Algebra 1

Unit 5: Comparing Linear, Quadratic, and Exponential Functions

Notes

Day 2 - Comparing Multiple Representations of Functions

Standard(s):

MGSE9-12.F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one function and an algebraic expression for another, say which has the larger maximum.

Scenario 1: Use the graph below to answer the following questions:

a. Which function has the largest x-intercept?

Linear

b. Which function has the largest y-intercept?

Linear

c. List the functions in order from smallest to biggest when x = 2:

Quadratic, Exponential, Lincon

d. List the functions in order from smallest to biggest when x = 5:

Exponential, Linear, Quadratic

e. List the functions in order from smallest to biggest when x = 7:

They all have the same y- Jahre.

f. List the functions in order from smallest to biggest when x = 9:

Quadratic, Linear, Exponential

Unit 5: Comparing Linear, Quadratic, and Exponential Functions

Notes

g. List the functions in order from smallest to biggest when x = 15:

Quadratic, Lincar, Exponential

h. Which functions have a positive rate of change throughout the entire graph?

Exponential

i. Which functions have a negative rate of change throughout the entire graph?

Incer

j. Which graph has a rate of change that is negative and positive?

Vuedvatic

m. Which function will eventually exceed the others?

Exponential

k. Which function has the largest ROC from [3, 5]?

[3, 7) (5, 5)

[3, 3) (5, 7)

[4]

[5, 0.5)

[7, 8]?

[1]

[7, 8]?

[8, 2)

[7, 3) (8, 2)

[7, 3) (8, -2)

[8, 9]

[8, 9]

Scenario 2: Consider the following:

f(x)

g(x)

	x	g(x)	
X	-2	-10	Y11/12
Xa	-1	-8	$\gamma_2 \geq 1$
6	0	-6	1 >+2
	1	-4	1 > +2

 $M = -\frac{8 - (-10)}{-1 - (-2)} = \frac{2}{1} = 0$

7=MX+1 a. Write an equation for each representation.

5

Algebra 1

Unit 5: Comparing Linear, Quadratic, and Exponential Functions

Notes

b. Which function has the greater y-intercept?

c. Which function has the smaller rate of change?

a. f(x)

a. Which quadratic function has the smaller minimum value? Explain why.

$$f(x) = -9$$

b. Which quadratic function has the bigger y-intercept? Explain why.

9(x) because it has a positive y-intercept.

c. Name the x-intercepts for each function (estimate if necessary):

f(x):
$$(4,0)$$
; $(2,0)$ $g(x)$: $(1,3,0)$ and $(6,8,0)$

4. A table of values is shown for f(x) and g(x).

X	f(x)	
0	0	
1	1	
2	4	
3	9	
4	16	
5	25	-

	x	g(x)	
	0	-2	\Box
	1	-1	
	2	1	
	3	5	
	4	13	
_	5	29	-

Which statement compares the graphs of f(x) and g(x) over the interval [0, 5]?

- The graph of f(x) always exceeds the graph of g(x) over the interval [0, 5]. The graph of g(x) always exceeds the graph of f(x) over the interval [0, 5].
- The graph of g(x) exceeds the graph of f(x) over the interval [0, 4], the graphs intersect at a point between 4 and 5, and then the graph of f(x) exceeds the
 - The graph of f(x) exceeds the graph of g(x) over the interval [0, 4], the graphs intersect at a point between 4 and 5, and then the graph of g(x) exceeds the

6

Algebra 1

Unit 5: Comparing Linear, Quadratic, and Exponential Functions

Notes

5. Which statement is true about the graphs of exponential functions?

- The graphs of exponential functions never exceed the graphs of linear and quadratic functions.
- The graphs of exponential functions always exceed the graphs of linear and quadratic functions.
- The graphs of exponential functions eventually exceed the graphs of linear and quadratic functions.
 - D. The graphs of exponential functions eventually exceed the graphs of linear functions but not quadratic functions.
- 6. Which statement BEST describes the comparison of the function values for f(x) and g(x)?

			_
x	f(x)	g(x)	
0	احده	-10	1+110
1	2 (2	- 9	/ / 2
2	4+2	-6	>+3 \ 2
3	612	-1	1>+5 (
4	8 10	6	>+7 22
5	lo	15	+9

- **A.** The values of f(x) will always exceed the values of g(x).
- **B.** The values of g(x) will always exceed the values of f(x).
- **C.** The values of f(x) exceed the values of g(x) over the interval [0, 5].
- **D.** The values of g(x) begin to exceed the values of f(x) within the interval [4, 5].