Unit 5 Notes

5/10/2021

Algebra 1

Unit 5: Comparing Linear, Quadratic, and Exponential Functions

Notes

Distinguishing Between Linear, Quadratic, & Exponential Functions

Standard(s):

MGSE9-12.F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.

MGSE9-12.F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

In this unit, we will review and compare Linear, Quadratic, and Exponential Functions.

Identifying Types of Functions from an Equation

Classify each equation as linear, quadratic, or exponential:

a. f(x) = 3x + 2

b. $y = 5^{x}$

c. f(x) = 2

d. $f(x) = 4(2)^{x} + 1$

e. $y = 4x^2 + 2x - 1$

Mass 1

Quadratic

Identifying Types of Functions from a Table

- Linear Functions have **constant** (same) **first differences** (add/subtract same number over and over).
- Quadratic Functions have constant second differences.
- Exponential functions have constant ratios (multiply by same number over and over).

Linear Function

x

Quadratic Function

Exponential Function

Determine if the following tables represent linear, quadratic, exponential, or neither and explain why. b.

У	
7] \ _3
4	7 5
1	72 - 5
-2	- 3
-5	7> _ ~
	y 7 4 1 -2 -5

1.5 -10 6 2

	х	У	
	-2	6	3.
	-1	3	K^{-} , Σ
7) (0	2	27
	1	3	
	2	6	> 3 > 2

Exponential

Qualratic

Linear Quadratic
$$y=2x+5$$

$$y=3x$$

$$y=7$$

$$y=7$$

Algebra 1

Unit 5: Comparing Linear, Quadratic, and Exponential Functions

Notes

Day 1 – Characteristics of Functions

Standard(s):

MGSE9-12.F.IF.4 Using tables, graphs, and verbal descriptions, interpret the key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; interval where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

Which of these characteristics do you already know?

Characteristic	Definition	Notation
Y-Intercept	Where the graph crosses the $\underline{\bigcup}$ - axis (x = $\underline{\bigcup}$)	(0, y)
X-Intercept/ Root/ Zero/ Solution	Where the graph crosses the axis (y =)	(x, 0)
Domain	All the possiblevalues or inputs of a function	All real numbers, $(-\infty, \infty)$ or $-\infty \le x \le \infty$
Range	All the possiblevalues or outputs of a function	y ≤ # or y ≥ #
Vertex Quelatic	Middle point of the parabola	(x, y)
Axis of Symmetry	that divides the graph into two mirror- images	x = # (x-coordinate of vertex)
Extrema: Maximum/Minimum Quadrate	Min: point of a graph Max: point of a graph	Only for Quadratic Functions
Maximum/Minimum Value	-value of the maximum or minimum (vertex)	y = # (y-coordinate of vertex)
Intervals of Increase/ Decrease/Constant	Increase: Graph goes Operation of Constant: Graph 15 Constant	x > # or x < #
Positive/Negative Intervals	Positive: the x-axis Negative: the x-axis	# < x < #or x > # or x < #
End Behavior	Where the graph "goes" on the left and right	As x increases
Rate of Change	Change in y over change in x Rise over run	$\frac{y_2 - y_1}{x_2 - x_1}$

2

Formative Assessment Quick Check

1. Which function has an end behavior of

as
$$x \to -\infty$$
, $f(x) \to \underline{\infty}$
as $x \to \infty$, $f(x) \to \underline{\infty}$

2. Which function has an end behavior of

as
$$x \to -\infty$$
, $f(x) \to \frac{+\infty}{-\infty}$
as $x \to \infty$, $f(x) \to \frac{-\infty}{-\infty}$

- 3. What is the only function that has an asymptote when graphed? Exponential
- 4. What function is this?

$$2(x^2 - 4x + 5)$$
 Chulleton

5. What function is this?

$$3(2+5x)$$
 Linear $6+15x$

6. Which function has an end behavior of

as
$$x \to -\infty$$
, $f(x) \to 3$ as $x \to \infty$, $f(x) \to \infty$