
Warm-Up

2/26/2021

- 1. What is the greatest common factor of 12, 16, 8, and 24? 74
- 2. What is the GCF of 4x, X^2 , and 12x?
- 3. What is the GCF of $4x^2y$, and $8xy^2$?

After completion of this unit, you will be able to...

Learning Target #1: Factoring

- Factor the GCF out of a polynomial
- Factor a polynomial when a = 1
- Factor a polynomial when a ≠ 1
- Factor special products (difference of two squares)

Learning Target #2: Solving by Factoring Methods

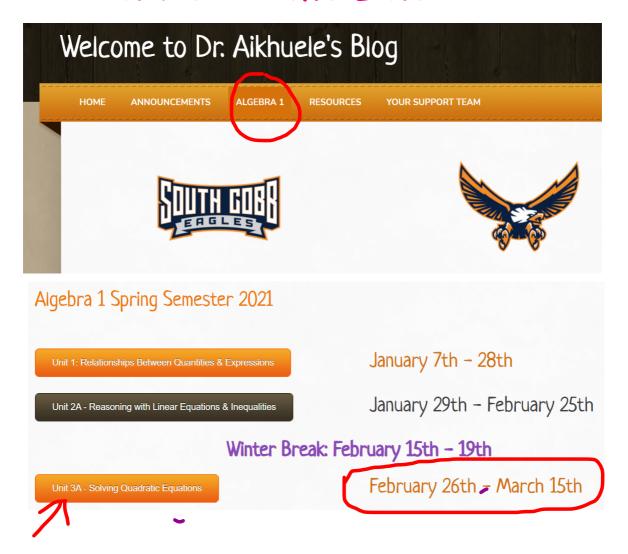
- Solve a quadratic equation by factoring a GCF.
- Solve a quadratic equation by factoring when a is not 1.
- Create a quadratic equation given a graph or the zeros of a function.

Learning Target #3: Solving by Non Factoring Methods

- Solve a quadratic equation by finding square roots.
- Solve a quadratic equation by completing the square.
- Solve a quadratic equation by using the Quadratic Formula.

Learning Target #4: Solving Quadratic Equations

- Solve a quadratic equation by analyzing the equation and determining the best method for solving.
- Solve quadratic applications


Solving by Factoring Quadratic Equations

Type of Factoring	What Should I Notice?	Examples
GCF (Day 1)	Two Terms Only "A & B" terms (ex. x² + 4x) No "C" Term	$x^2 - 5x = 0$ $3x^2 + 6x = 0$
A = 1 (Day 2)	Three Terms Two Terms (No "B" Term) Integer Zeros (ex. x = 3 & -4)	$x^2 + 4x - 32 = 0$ $x^2 - 49 = 0$

		$3x^2 - 13x - 10 = 0$
	Three Terms	
A not 1	The "a" term has a coefficient in front of x²	
(Day 3)	(ex. 3x ²)	
	Fractional Zeros (ex. x = ½ and -3)	

Remember to always have your equations set equal to 0!

Unit 3A Time Line

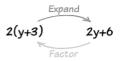
Essential Question 2/26/2021

 How do you factor quadratic polynomials using the GCF method?

Learning Target

Factor quadratic polynomials using GCF.

What is Factoring 2/26/2021


Standard(s):

MGSE9-12.A.SSE.3a Factor any quadratic expression to reveal the zeros of the function defined by the expression.

What is Factoring?

Factoring

- Finding out which two expressions you <u>multiply</u> together to get one single expression.
- "Splitting" an expression into a product of simpler expressions.
- The opposite of expanding or distributing.

Numbers have factors:

Expressions have factors too:

$$(x+3)(x+1) = x^2 + 4x + 3$$

Review: Finding the GCF of Two Numbers

Common Factors

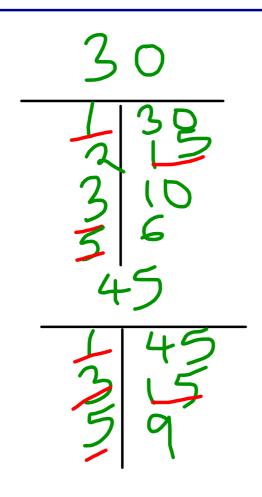
• Factors that are shared by two or more numbers

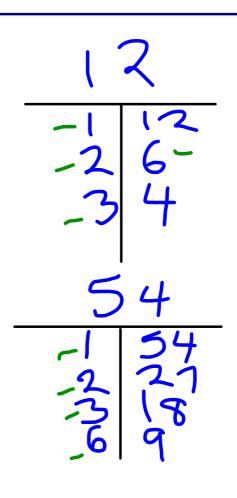
Greatest Common Factor (GCF)

• To find the GCF create a factor t-chart for each number and find the largest common facto

Example: Find the GCF of 56 and 104

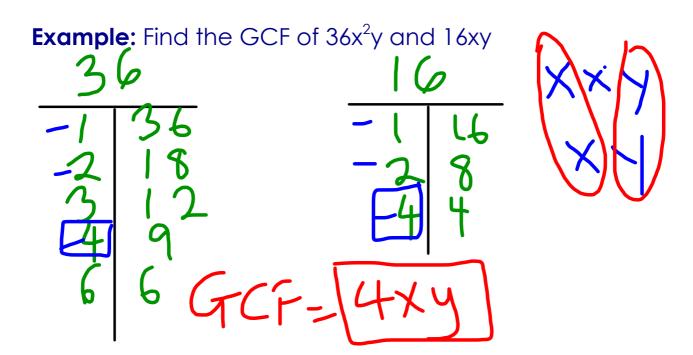
	56
1	56
2	28
4	14
7	8
,	U

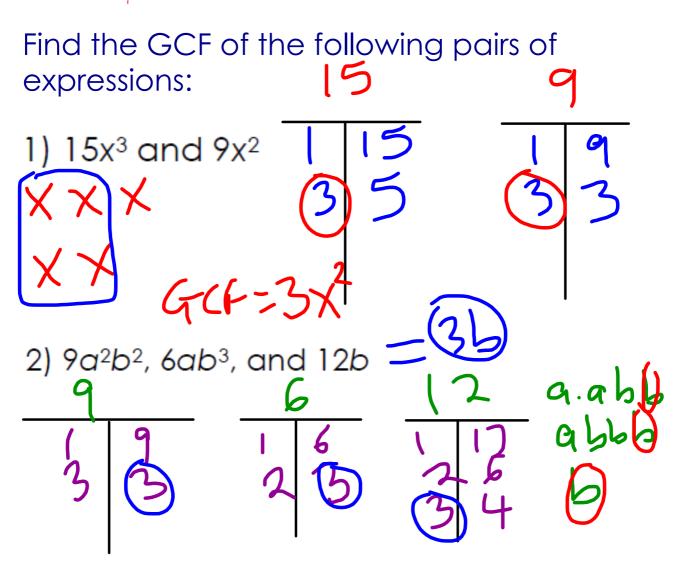

	104
1	104
2	52
4	26
8	13


So, the GCF of 56 and 104 is 8.

Examples

Find the GCF of the following numbers. a. 30, 45 = 15 b. 12, 54 =


b. 12, 54 **= 6**

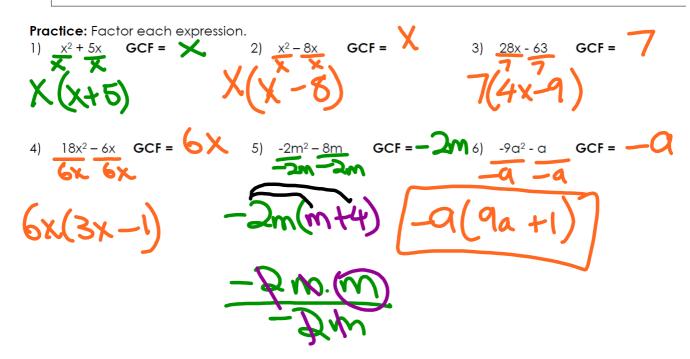


Find the GCF of Two Expressions

To find the GCF of two expressions, create a factor chart for the two numbers AND expand the variables. Circle what is common to both.

Examples

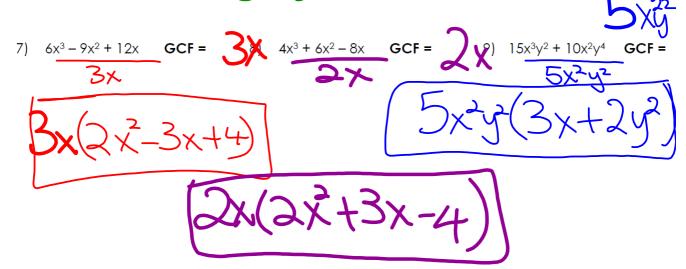
Practice - You do


3) 8x² and 7y³

The state of the state

Factoring by GCF

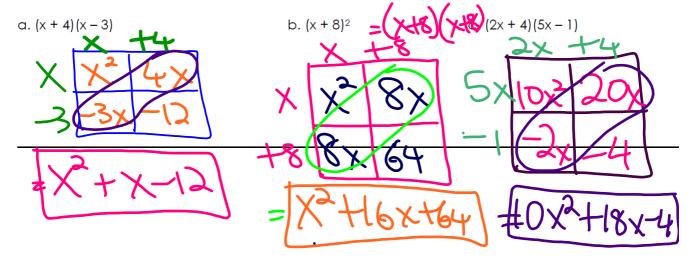
Steps for Factoring by GCF


- Find the greatest common factor of all the terms.
- 2. The GCF of the terms goes on the outside of the expression and what is leftover goes in parenthesis after the GCF.
- 3. After "factoring out" the GCF, the only tight number that divides into each term should be 1.

Warm-Up 3/1/2021

Factoring by GCF

Class Work


Day 1: Factoring by GCF

Day 1 – Factor GCF of a Quadratic Expression

Practice Assignment

Review: Multiply the polynomials

Factor the following polynomials.

1. $x^2 + 10x$

2. $x^2 - 9x$

3. x² - 6x X(x-6)

X(X+10)

4. $3b^2 - 81b$

5. $10x^2 + 40x$

6. $8x^2 + 24x$

10. $-2x^2 - 4x$

12. -28x² - 14x

Quick Check

Factor the following Polynomial:

$$9x^4 + 3x^3 + 12x^2$$

$$3x^{2}(3x^{2}+x+4)$$

Functions notation.ppt

Functions Practice HW.docx

Functions notation notes.ppt