Warm-Up
 2/26/2021

1. What is the greatest common factor of $12,16,8$, and 24 ? $=4$
2. What is the GCF of $4 x, X^{2}$, and 12x? $=X$
3. What is the GCF of $4 x^{2} y$, and $8 x y^{2}$?

After completion of this unit, you will be able to...

Learning Target \#1: Factoring

- Factor the GCF out of a polynomial
- Factor a polynomial when $a=1$
- Factor a polynomial when $a \neq 1$
- Factor special products (difference of two squares)

Learning Target \#2: Solving by Factoring Methods

- Solve a quadratic equation by factoring a GCF.
- Solve a quadratic equation by factoring when a is not 1 .
- Create a quadratic equation given a graph or the zeros of a function.

Learning Target \#3: Solving by Non Factoring Methods

- Solve a quadratic equation by finding square roots.
- Solve a quadratic equation by completing the square.
- Solve a quadratic equation by using the Quadratic Formula.

Learning Target \#4: Solving Quadratic Equations

- Solve a quadratic equation by analyzing the equation and determining the best method for solving.
- Solve quadratic applications

Solving by Factoring Quadratic Equations

Type of Factoring	What Should I Notice?	Examples
$\begin{gathered} \text { GCF } \\ \text { (Day 1) } \end{gathered}$	Two Terms Only "A \& B" terms (ex. $\mathrm{x}^{2}+4 \mathrm{x}$) No "C" Term	$x^{2}-5 x=0$ $3 x^{2}+6 x=0$
$\begin{gathered} \mathbf{A}=1 \\ \text { (Day 2) } \end{gathered}$	Three Terms Two Terms (No "B" Term) Integer Zeros (ex. $\mathrm{x}=3$ \& - 4)	$x^{2}+4 x-32=0$ $x^{2}-49=0$

		$3 x^{2}-13 x-10=0$
Anree Terms		
(Day 3)		

The "a" term has a
coefficient in front of x^{2}
$\left(\right.$ ex. $\left.3 x^{2}\right)$

Fractional Zeros
(ex. $x=1 / 2$ and -3$)$

Remember to always have your equations set equal to 0 !

Unit 3A Time Line

Welcome to Dr. Aikhuele's Blog

Algebra 1 Spring Semester 2021

January 7th - 28th
January 29th - February 25th
Winter Break: February 15th - 19th
February 26th - March 15th

Essential Question 2/26/2021

- How do you factor quadratic polynomials using the GCF method?

Learning Target

Factor quadratic polynomials using GCF.

What is Factoring 2/26/2021

Standards):

MGSE9-12.A.SSE.3a Factor any quadratic expression to reveal the zeros of the function defined by the expression.

What is Factoring?

Factoring

- Finding out which two expressions you \square multiply together to get one single expression.
- "Splitting" an expression into a product of simpler expressions.
- The opposite of expanding or distributing.

Numbers have factors:

Expressions have factors too:

Review: Finding the GCF of Two Numbers

Common Factors

- Factors that are shared by two or more numbers

Greatest Common Factor (GCF)

- To find the GCF create a factor t-chart for each number and find the largest common facto

Example: Find the GCF of 56 and 104

56			104	
1	56		1	104
2	28		52	
4	14		2	26
7	8		8	13

So, the GCF of 56 and 104 is 8 .

Examples
Find the GCF of the following numbers. $\begin{array}{ll}\text { a. } 30,45=15 & \text { b. } 12,54=6\end{array}$

Find the GCF of Two Expressions To find the GCF of two expressions, create a factor chart for the two numbers AND expand the variables. Circle what is common to both.

Examples
Find the GCF of the following pairs of
expressions: $\quad 15$

Factoring by GCF Steps for Factoring by GCF
(1) Find the greatest common factor of all the terms.
2. The GCF of the terms goes on the outside of the expression and what is leftover goes in parenthesis after the GCF.
3. After "factoring out" the GCF, the only humber that divides into each term should be 1 .

Practice: Factor each expression.

1) $x^{2}+5 x \quad$ CF $=$
2) $\frac{18 x^{2}}{6 x}-\frac{6 x}{6 x}$ GCF $=$ $6 x(3 x-1)$

Warm-Up 3/1/2021
Factoring by GCF

Class Work

Day 1: Factoring by GCF

Day 1 - Factor GCF of a Quadratic Expression
Practice Assignment

Name: \qquad
Date: \qquad Block: \qquad

Review: Multiply the polynomials

Factor the following polynomials.

1. $x^{2}+10 x$
2. $x^{2}-9 x$ $x(x+10)$
$x(x-9)$
3. $x^{2}-6 x$
$x(x-6)$
4. $3 b^{2}-81 b$

5. $-2 x^{2}-4 x$

Quick Check

Factor the following Polynomial:

$$
\frac{9 x^{4}+3 x^{3}+12 x^{2}}{3 x^{2}}
$$

Functions notation.ppt
() Functions Practice HW.docx

Functions notation notes.ppt

